
Journal of Applied Mechanics and Technical Physics, Vol. 36, No. 5, 1995 

S Y M M E T R Y  O P E R A T O R S  A N D  G E N E R A L  S O L U T I O N S  

O F  T H E  E Q U A T I O N S  
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N. I. Ostrosab l in  UDC 539.3:517.958 

Different variants of general solutions, i.e., representations of stresses or displacements in terms 
of arbitrary independent functions (for example, harmonic and biharmonic) such that  the equations of 
equilibrium or motion are satisfied identically, are known in the theory of elasticity [1-13]. The general 
solutions of Kelvin-aam6 [13], Galerkin [6], and Papkovich-Neuber [1, 3, 4] are most often used. The problem 
of generality and completeness of the solutions has been discussed in many works (see, for example, [2-5, 8, 
9, 14-24]). 

In the present work, using the equations of the linear theory of elasticity as an example, we show that 
for each general solution there is a formula for obtaining new solutions, i.e., some symmetry operator [25]. 
For an isotropic material, the symmetry operators are found for the solutions by Kelvin-Lam4, Galerkin, 
and Papkovich-Neuber and the generality of these solutions is proved. Some other symmetry operators are 
presented in [26, 27]. 

Let us consider linear differential operators of the form 

A i j  = a i j ( x , )  + a i j k ( x , ) O k  + a i j ( m) ( x s ) Ok l  + aij(klm)(Xs)Oklrn q- . . .  (1) 

and formally conjugate operators 

A*ji = ai~ ( x , ) - Oka i jk (  Xs ) q- Oklaij(  kl) ( Xs ) -- Okl,naij( klm) ( X s ) -]- . . . .  (2) 

Here xs  are independent variables; Ok is the derivative with respect to the variable xk; repeated subscripts 
indicate summation, and subscripts in parentheses denote a symmetric function of these subscripts. 

Let us assume that  A* = A, D* = D, and A C  = B D ;  then C*A = D B * .  For given A and B one can 
always find [28] operators C and D satisfying these relations. 

If u = C~2, where Dr 2 = 0, then the equation 

A u  = AC~o = B D c p  = 0 (3) 

holds. If ~ = B*~, where Aft = 0, then the equation 

is valid. Thus, according to the formulas 

D ~  = D B * ~  = C * A 5  = 0 (4) 

u = C~o, qo = B*~ (5) 

solutions of Eqs. (3) and (4) transform into one another. If A~ = 0, then it follows from (3)-(5) that  u = 
C B * ~  is a new solution: 

A u  = A C B * ~  = B D B * f i  = B C * 4 ~  = 0. (6) 
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For the linear equations .4u = 0 the operator Q is called a symmetry operator [29] if AQ - QA = 
RA.  The symmetry operator transfers the solution of the equation A~ = 0 into a new solution u = Qg: 
Au = A Q g  = (Q + R)A~ = 0. Hence and from (6) it is obvious that Q = CB* is a symmetry operator and 

R = B C * -  CB*.  
The general solution of Eq. (3) has the form 

u = Coy, D T  = f ,  B f  = 0, (7) 

where f E KerB = {f. B f  = 0}. If the operators are such that D Ker C = KerB, then the general solution of 

Eq. (3) is  [28] 

u = Cc2, D~ = 0. (8) 

Actually, there is L' such that u = C r  D e  = f ,  B f  = O. Since D Ker C = KerB, there is g E Ker C 
such that f = Dg. Then D(c, - 9) = 0, u = C( r  - g). Denoting c 2 = ~ - g, we obtain (8). 

Thus, the general solutions of the equation Au = 0 are based on the relation A C  = B D  and are given 
by formulas (7) or (8). The formula of producing new solutions u = CB*~ or the symmetry operator Q = CB* 
correspond to each general solution. The approach cited makes it possible to find symmetry operators of the 
form Q 2_ CB*,  and if a synunetry operator Q is known which can be presented in this form one can find [28] 
the operator D and obtain the general solutions (7) or (8). 

The general solutions known in the theory of elasticity are usually written in the form (8) without 
checking the validity of the condition D Ker C = KerB. But if this condition is not fulfilled, then (8) will not 
be a general or a complete solution, since in this case the solutions corresponding to the nonhomogeneous 
equation D~o = f E KerB are lost. We further check the condition D Ker C = KerB and find the symmetry 
operators Q = CB* for the case of an isotropic material for the solutions by Kelvin-Lam~, Galerkin, and 
Papkovich-Neuber. 

In the classical Kelvin-Lam~ solution [13] for the operator 

Aij = Aji = (1 + t~)Oij + (#Okk - pO..)6ij = A~i (9) 

,(A and # are Lam~'s. constants, p is the constant density of the material, r is the Kronecker symbol, 0. is 
the time ~terivative) the displacements uj are represented as: 

u i=Oj~3r -e jpsOpk ' s .  Oi~.'i=O, [ ( A + 2 # ) O k k - - p O . . ] ~ = O ,  ( # O k k - - p O . . ) r  S = 1 , 2 , 3  (10) 

(ejps are the Levi-Civita symbols). From (10), we obtain 

01 02 03 [010 0 ,11, 
C = 02 03 0 -01 , -03 0 01 

03 --02 01 0 02 --01 0 

(primes denote transposition of the matrix). To find A C  we substitute uj from (10) into (9): 

d i j u j  = [(A-}-#)Oij +(#Okk -- pO..)hij] (Ojqg+ejpsOp~bs) = [(A+2#)0/d, -- pO..] Oiqo+(#Okk - pO..)eipsOp~bs. (12) 

It is obvious from (12) that 

o -03 02 
A C  = 03 0 -0~  

01 7 (.~ Jr 2l-t)Okk -- pO.. 0 0 0 
02 ] 0 #Okk -- pO.. 0 0 = C D = B D, 
03 - 0 2  01 0 0 0 #Okk--PO.. 0 

0 0 0 #Okk -- pO.. 

i.e., B = C and B* = C* = - C ' .  and D is the diagonal matrix. From the relation C*A = DB* it follows that 
- C ' A  = D ( , C ' ) ,  C'A = DC' .  Then ~ = C'~ and D ~  = D C ' ~  = C'A~ = O. 

Now taking into account (11), we write qo and r  in terms of ~: 

= r = - jpsop s. (13) 
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Since u = Coy and c 2 = C 'g ,  u = CC' f i  is a new solution: A u  = A C C ' ~  = C D C ' f i  = C C ' A 5  = 0. From (10) 
and (13), we obtain the formula for deriving solutions 

u, = o j o ~ i  + ejp~op(-~s, . ,o, , ,r , . )  = ~j.0pp~,,  = o~p~,, (14) 

where Q = C C  ~ = 6jnOpp is the symmetry  operator  and gj ,  the solution of the equation 

[(A + #)Oij + (#Okk -- pO..)~ij] gj = 0. (15) 

It follows from (13) that  the second equation (10) is always valid: 

The kernel of the  operator  C = B is determined from the equations 

01g + 02ga - Oag2 ] 
Cg = 02g + 03gl  - Oag3 = O, 

039 + 0192 -- 02ga 

whose solution, as can be  easily verified, is as follows: 

9 = Oifi, Okkfi = O, g~ = O~f - esm,Omf, ,  (16) 

( f  is an arbi t rary  function).  We now find p = Dg: 

p = [(A + 2#)0kk -- pO..lOifi = Oi[(A + 2#)0kk -- pO..]fi = Oi(--pO.. f i) ,  

Ps = (#Okk -- pO. . ) (Osf  -- e smnOmf . )  

= 0s[(#0kk -- pO..) f]  -- esmnOrn[(#Okk - -pO. . ) fn]  = 0s[(#0kk -- pO..)f] -- esmnOrn(--pO..f,~). 

Denoting here q = (#0kk -- pO. . ) f ,  qi = --pO.. f i ,  we find that  D Ker C has the form (16) 

p = Oiqi, Ok~qi = O, p~ = O~q - esm,,O, nq,,. 

This means that  D Ker C = Ker B = Ker C, the Kelvin-Lam6 solution is complete, and it suffices to write it 
in the form (10). Also, the formulas (13)-(15) hold true. 

It should be noted that  in statics, as is seen from (10), the functions r and v/~ are harmonic, and then 
Ojuj = 0i j  ~ = OjjO~g~ = 0, i.e., there is no change of volume. This is related to the fact that  following formula 
(14) an arbi t rary solution gj  is transferred into a solution uj ,  whose volume remains unchanged. 

Let us now consider the Calerkin solution [6], which we write as [10] 

w = C~k~k = [ - ( a  + # )0 ,k  + ((~ + 2 ~ ) 0 ~  - p0..)~jkl~,k, 
(17) 

Dik~k  = (~0pp - ; 0 . . ) ( ( ~  + 2 ~ ) 0 ~  - ;0..)~jk~ok = 0. 

It is obvious that  C~j = Cjk in (17). Then we find 

A i j C j k  = [(A + #)0 i i  + (#0  m, - p0. . )~0][-(A + I~)Oik + ((A + 2#)0s,  - pO..)~jk] 

= (ItOp~ - pO..)((A + 2 # ) 0 ~  - PO..)6ii~jk = B i jDj~ .  (18) 

It follows from (18) that  the  following variants are possible: 

1) Bij  = 6q, Di~ = ( # 0  m, - pO..)((A + 2#)0~ - pO..)~i~; 

2) Bi j  = (#O~p - pO..)6ij, Djk  = ((A + 2#)0ss - pO..)~j~; 

3) Bi j  = ((A + 2#)Oss - pO..)6q,  Dj~ = (#Opp - pO..)~j~; 

4) Bij  = ( # 0 ~  - p0..)((A + 2#)0~s - pO..)6ij, Djk  = 6jk. 

Variants 1 and 4 are equipotent  and to them correspond the solution (17). In addition, bearing the 
foregoing in mind, we obtain  

9~j = B~* ui = Bij~ti = 6ijui = ~tj, Aij~tj = [()~ + #)Oij + (#Okk -- pO..)~ij]uj = 0; (19) 
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uj = CjkBki  , = CjkBikgi  = Cj~.~ik~i = Cjkgk = [-()~ + #)Ojk + ((A + 2#)08~ -- pO..)~Sjk]gk. (20) 

Formulas (17) are the ordinary Galerkin solution, (19) is the expression of cpj in terms of gj, and (20) is the 
formula for obtaining new solutions (Cj~ is the symmetry operator). 

For variant 2, we find similarly 

uj = Cjk~k,  D jk~k  = ((A + 2~)08~ -- pO..)Sjkcpk = 0; (21) 

r = B~iui = Bi ju i  = (#Op; - pO..)~ijui = (#Opp - pO..)uj,  Aij~zj = O, 
(22) 

w = C j k B i ~ i  = C~kB ik~  = Cik(~Opp - pO..)5~kr~ = Cjk(~Opp - pO..)rzk. 

In (21), cpj satisfy the wave equation rather than the product of two wave operators, as in (17). But instead, 
the multiplier (#Opp - pO..) appears in (22). 

For variant 3, we have 

us = Cjk~k ,  D jk~k  = (#Opp -- pO..)~jkcyk = 0; (23) 

~j  = B~iui = B i jg i  = ((A + 2#)Oss - pO..)~ijui -= ((/~ q- 2#)Oss - pO..)gzj, a i j u j  = 0, 
(24) 

uj  = C ~ k B I ~  = CikB~kr,~ = CM(~ + 2~)0~ -- pO..),~,k~ = CM(~  + 2#)0~ -- p0 . . )~ .  

Formulas (23) and (24) are analogous to (21) and (22), and only the multipliers (#0pp - pO..) and ((A + 
2#)0~ - pO..) change places. 

Thus, for the Galerkin solution the above three variants of the formulas are possible. Since for solution 
(17) B i j f j  = g i j f j  = f i  = 0, the forms (7) and (8) coincide and solution (17) is general. Solutions (21) and 
(23) will become complete if they are written in the form (7), where B and D correspond to variants 2 or 3. 

We write the Papkovich-Neuber solution [1, 3, 4] for an isotropic material  in the case of statics as 
in [271 

Uj = CjkqPk -= (1 q- 2#l)~0j -- XlOj~Pl -- X2OjqO2 -- X3Ojq03 -- Oj~04, (25) 

D ~  = (1 + m)O~p~j = O, m = ~/()~ + #) .  

In this case the appropriate operators take the form 

Aij  = Oij + #IgijOss = A~i, Cjk = (1 + 2#1)Or -- xkOj, C~j = 2(1 + pl)~jk  ~- ZkOj, 
(26) 

Bij  = (2#~ - l ) ~ / j -  xjOi, B j * =  2 l ~ i j  + xjOi, Dj~ = ( l  + #~)~jkOpp = D~j,  x 4 = i ,  0 4 = 0  

and the relations A C  = B D  and C*A = DB*  hold. From (26), we obtain the expression of the function pj  
via the solution of the Lam~ equations and the formula for obtaining new solutions (symmetry operator): 

9~j = B;i~ti = 2#lUj + xjOiui,  u4 = O, A i j u j  = Oij~j + #lOss~Zi = O, 

us = c ~ &  = (2~[(1 + 2 ~ ) @  + ~0~ - ~0~1 - ~ 0 ~ ) ~  (27) 

= 2u~[(1 + 2u,)~j + ~ , 0 ~ -  ~ 0 ~ 1 - ( d  + ~ + d + 1)0;,~. 

It follows from (27) that  functions qoj are connected with each other by the relation 

Ojqoj = 2#,qo4 + Oj(xj~4) .  (28) 

Let us show the generality of solution (25), i.e., check the condition D Ker C = Ker B. The kernel of 
the operator C is determined from the equations 

Cjkgk = [(1 + 2/~1)$jk -- xkOjlgk = [2(1 + #l)6jk - -Ojxklgk  = 2(1 + t q )g j  - -Ojxkgk  = O. 

These equations will hold if gj is taken in the form 

gj = Ojg, j = 1,2, 3, g4 = --xigi + 2(1 +/~l)g, i ~< 3 (29) 

(g is an arbitrary function), i.e., (29) is Ker C. 
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The kernel of the operator B is found from the equations 

Bij f j  = [(2#, - 1)(fi1 - xiOi]f j = (2#,Sij - Oixj)f ) = 2plfi - Oixjf j = O, 

which will always be fulfilled if we set 

fi = Oif, i = 1,2, 3, f4 = -xs f~  + 2#,f ,  s ~< 3 (30) 

( f  is an arbitrary function), i.e., (30) is KerB. It is evident that C is obtained from B by replacing the 
coefficient/Zl by 1 + #1; a similar replacement is also made for the kernels of (29) and (30). 

Now we find D Ker C: 

Djkg~ = (1 + #l)Oppgi, (1 + #l)Oppgj = (1 + #l)OppOjg = 0j[(1 + #a)Opp9], j = 1,2, 3, 
(31) 

(1 dr I.tl)Oppg4 --~ (1 dr ].tl)Opp[--xig i dr 2(1 dr #l)g]  = (1 dr #l)(-xiOppgi dr 2#lOppg), i <<. 3. 

If in (31) we denote 

f = (1 dr ~l)Oppg, fi = (1 dr #l)Oppgi --- 0i[(1 dr ~l)Oppg] = Oif, i = 1,2, 3, 

f4 = (1 + #l)Oppg4 = -z i (1  dr #l)Oppg{ + 2#1(1 + tq)Oppg = - x i f i  + 2#1f, i <. 3, 

then (31) takes the form (30), i.e., we obtain that D Ker C = Ker B. 
Thus, the Papkovich-Neuber solution is general and complete, i.e., the form (25) contains all solutions 

of Lame's equations. It follows from (27) and (28) that, in the general case. one cannot assume that the 
function ~04 is equal to zero, as many authors (beginning from P. F. Papkovich) did [2, 3]. The values of 
Poisson's ratio u = -3 /4 ,  - 1 /2 ,  - 1 / 4 ,  0, and 1/4 are not exceptional, but are associated with attempts in 
[3, 15, 16, 21] to prove the generality of the Papkovich-Neuber solution for the case ~y4 = 0. 

This work was reported at the Section "Mathematical modeling" of the International Conference on 
Applied and Industrial Mathematics dedicated to the memory of the Nobel Prize winner L. V. Kantorovich 
(Novosibirsk, July 25-29, 1994). 

This work was supported by the Russian Foundation for Fundamental Research (Grant 93-01-16757). 
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